
DISCLAIMER

This is a little Disclaimer for if you haven’t read the one on our site. The tools
and tutorials KD-Team develops and publishes are only meant for educational

purpose. WE DO NOT encourage the use of these tools and tutorials for
malicious purpose. We learned a lot during the development of them so we

hope you also learn and don't just use it without any brains. We take
completely NO responsibility for any damage caused by them nor

are we or our isp responsible for what you do with them.
Greetz: KD-Team

http://www.kd-team.com

 1

Timing Rootkits

Using RDTSC and RDPMC to defeat rootkits

Now that you feel safe…

Let’s defeat this technique by using WRMSR

 2

Index

A word of thanks .. 4
Introduction .. 5
RDTSC for detection.. 6

What is RDTSC?.. 6
How can we use it for detection? ... 6

RDPMC for detection... 8
What is RDPMC?... 8
How can we use it for detection ... 8

WRMSR makes sure that rootkits continue to reign.. 9
Conclusion.. 10
References .. 11

Websites: .. 11
Books:... 11

 3

A word of thanks

First of all I think the best begin of this paper is to start with a word of thanks to all the people
that helped me in a way in finding if this new approach to detect a rootkit was plausible or
not.

I want to thank them all for their time and effort in answering my questions.
In no particular order:

n0limit
parad0x
Animal
ScriptGod
Bob K (lovepump)
tweakz20

I would also like to thank the following people specially.

wiNGCom for being kind enough to provide a special purpose rootkit
tibbar for defeating what seemed to be a full proof idea.

I also want to thank all the testers that helped me out with running the POC on theire
computers.

Sorry if I forgot any one. If so thanks to who ever I might of have forgotten. Without every
one named and unnamed it would of have been impossible to bring this along.

 4

Introduction

Welcome all to another paper from KD-Team. This time the paper is about a new way of
looking at how you can detect the presence of a rootkit on a system mostly targeted at the
windows operating system. Like you have probably noticed on our site we have posted
alternate ways of detecting a rootkit. Both of the ways where just a simple brute force on a
function that hadn’t been hooked by the rootkit. You can find them both in the tool section of
our site named “Detect Con” and “Detect Proc”. Like you have already guessed, these
methods are not full proof.
So we started to think about a totally different approach to detect a rootkit. We started with
answering the following two questions:

1) Does a rootkit have impact on system performance?
2) Does a rootkit slow down a computer?

When trying to find the answers to those questions we where thinking in a user way. Would a
user notice if his computer got slower? If so how much slower should it get? Would a user
notice if his computer suddenly had bad performance? If so how bad should the performance
decrease?
So how do you measure that? The answer was using the instructions and possibilities
provided by the x86 instruction set. The Intel manuals where very helpful along the road.
The only bad thing about all this is, it started as a unbeatable method cause the instructions
provided by intel are not hookable unless you remake the instruction set on the chip. So what
we need to do is start the measurement before function exection then execute the function and
stop the measuring when the function ends. The registers used though are subtle to
manipulation like tibbar nicely pointed out, more about this in the WRMSR part.
Although tibbar has found a workaround for this , it does not mean it renders the method
useless. This method combined with the work of rootkit revealers and other detectors, can be
a very though pain in the ass for most rootkit developers.

So now that we have had the introduction and the basics of the detection explained lets see
into it in more detail. We will discuss the time option for rootkit detection , the performance
option and finally how to defeat both of these methods.

I know what you all think now, isn’t it odd to release a paper with a new detection method
and at the same time explain how to defeat it? Well since the discovery of how to defeat this
method surged while investigating the method we think it’s best to publish them both. At least
now if some one implements this method in a rootkit detector he will not have a vain sense of
security.

For the performed tests we used a modified version of the code which link is in the references
part of this paper. Reason we haven’t coded a program for this is simply cause we don’t have
got the time.

 5

RDTSC for detection

What is RDTSC?

Lets quote the intel manual: “RDTSC—Read Time-Stamp Counter”. So this is a instruction to
retrieve the value of the time stamp counter. Now what exactly is the time stamp counter?
Lets quote intel again “The processor monotonically increments the time-stamp counter MSR
every clock cycle and resets it to 0 whenever the processor is reset”. So put in other words it
counts the cpu cycles. Now this sounds interesting if we could measure the clock cycles a
function needs to execute right?

How can we use it for detection?

As stated before you must start the measurement before function execution and stop it
afterwards. There are a few things to take into account when coding this. The windows
operating system is a pre-emptive system. Meaning that it shares the time between processes
and threads. So you got to make sure the function you are measuring won’t be interrupted by
windows. Luckily windows provides a excellent way to do that named SetPriorityClass().
With that function and using as second parameter REALTIME_PRIORITY_CLASS. You can
make sure the execution of your measuring doesn’t get interrupted.
A practical point to take into consideration is the following. The execution time (clock cycle)
a function needs depends on the work a function must perform. So you must make sure that
you use hooked functions that are not to dependant of the environment. This means avoid
functions interacting with your hard drive, avoid functions that depend heavily on the amount
of data they have to go through. For example we could use the following function to perform
the tests OpenProcess(). Why? Cause this function is not disk dependant, and the amount of
data it has to go through is reasonable constant if you perform the tests with the same amount
of processes running. Just don’t forget the paging of memory by windows so it could in a rare
occasion happen that the memory is paged out, usually you should be alright though.
Although a light alteration in the process would not severely influence on detecting a rootkit it
would influence on the results displayed. Here are some results we tested with it’s always
displayed in a before and after rootkit way.

INTEL
BEFORE
Clock
50216
9516
7440
7108
7204
7108
7112
7192
7204
7200

INTEL
AFTER
Clock
63824
12724
9516
9052
9032
9040
9024
9020
9012
9036

AMD
BEFORE
Clock
28904
 3546
 2501
 2358
 2415
 2294
 2272
 2272
 2399
 2272

AMD
AFTER
Clock
58835
 6333
 3946
 3344
 3168
 3312
 3168
 3140
 3244
 3168

 6

7176
7168
7168
7168
7168
7188
7172
7176
7148
7160

9056
9028
9044
9016
9032
9032
9024
9052
9016
9060

 2272
 2415
 2272
 2272
 2272
 2349
 2272
 2272
 2325
 2272

 3140
 3140
 3282
 3168
 3140
 3229
 3168
 3140
 3140
 3209

The above two tests where performed on different machines, with different processor and
different amount of processes. As you can see the difference between a machine without a
rootkit and a machine with a rootkit is obvious. We have performed more tests and the
amount of extra cycle with a hooked function of OpenProcess() stays +/- around the 1000.
This is of course hook specific. So this clearly shows that the hooking of a function can be
detected. A important thing to remember is that dkom is not detectable with this measuring.

 7

RDPMC for detection

What is RDPMC?

Lets quote the intel manual: “RDPMC—Read Performance-Monitoring Counters”. So this is
a instruction to retrieve the value of the performance counters. Now what exactly are the
performance counters? Lets quote intel again “The performance-monitoring counters are
event counters that can be programmed to count events such as the number of instructions
decoded, number of interrupts received, or number of cache loads”. So this means we can
actually measure almost everything the processor does when executing a function. This is
highly interesting cause it can gives us extra guarantee of the presence of a rootkit.

How can we use it for detection

Most off the conditions explained in the same section on the RDTSC command apply to this
command to. It is important to remind you that the RDPMC is a help to detect a rootkit we do
not recommend to use it stand alone, instead use it in combination with the RDSTC detection
method. This caused by the minimalistic performance changes that occur when using a
rootkit. Below you can see the result of one of the multiple tests we conducted. Like you can
see the changes are minimalistic to none.

BEFORE
Uops CodeMiss DataMiss
662 21 10
547 4 1
547 4 1
547 4 1
547 4 1
547 4 1
547 3 1
547 4 1
547 3 1
547 3 1
547 3 1
547 4 1
547 3 1
547 3 1
547 4 1
547 3 1
547 3 1
547 3 1
547 4 1
547 3 1

AFTER
Uops CodeMiss DataMiss
662 23 11
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1
547 5 1

Like you can see it’s a difference but not to big. So it’s best to use this together with RDSTC.

 8

WRMSR makes sure that rootkits continue to reign

Well now we are at the part that totally destroyed the idea of being full proof cause of the
idea that processor instructions can not be hooked. We will explain the main idea on how to
defeat it. A more technical view of the defeating method will be probably be published by
tibbar himself.

Lets start with that it indeed is not possible to hook a processor instruction as far as we know.
We DID however forget that we are after all measuring a hooked function. So everything
what that function performs will be performed anyways.

So this consists that the rootkit all it needs to do is:

- measure the number of cycles used by original function
- calculate how much extra cycles the hook it is going to take
- use RDMSR to find the current timestamp
- decrement that value with the extra cycles used by the rootkit and the following

WRMSR call
- use WRMSR to write that value to the correct registers

After performing the above operations when the measuring program reads the registers to
know how long it took the function to execute it will have the same cycles a non-hooked
function does.
This of course requires a great amount off effort for the rootkit writer to implement it correct
and make sure he is exactly correct or at least in a reasonable range.

Like almost always the defeat of security is easier and shorter then the security measure itself.

 9

Conclusion

We can safely conclude that detecting a rootkit with time and performance monitoring is
possible. We can also conclude that this method can not really be used as a rootkit detection
in the real sense of the word. Since the differences between processors is to big to make a
baseline. So this should be used as a check of the system virginity. So when a system is clean
you can take a snapshot of the system and save the results or print them out. Then whenever
the need arises to be sure the system has not been compromised you can perform a
measurement and compare the results.
So this method is good to make sure system integrity is harder to circumvent, seeing the fact
that a rootkit needs to fake a lot of data.

Off course we must not forget that it indeed IS possible to fake the data. So when
implementing this method you must make sure you implement the most amount of data as
possible. This way making it a real pain in the ass for most rootkit writers. Also make sure
this method is not standalone but uses other methods like registry hive reading etc.

Well we have come to the end of this paper. Hope you all enjoyed it and that it was a new
fresh way to look at how you can detect rootkits.

 10

References

Websites:

http://www.rootkit.com – excellent reference for every one wanting to know more about
rootkits.
http://www.msdn.microsoft.com – always nice to have around when playing with windows
http://www.agner.org/assem/#testp – reference code for any one needing a example on how to
work with RDTSC and RDPMC. We used a slightly modified version of this to perform the
tests. To busy at the moment to release a special purpose application for this kind of detection.
Maybe we will in the future.
http://www.intel.com – off course needed to retrieve the manuals.

Books:

- Rootkits, subverting the windows kernel by Greg Hoglund and James Butler
- Microsoft Windows Internals by Mark E. Russinovich and David A. Solomon

 11

http://www.rootkit.com/
http://www.msdn.microsoft.com/
http://www.intel.com/

	A word of thanks
	Introduction
	RDTSC for detection
	What is RDTSC?
	How can we use it for detection?

	RDPMC for detection
	What is RDPMC?

	Conclusion
	Websites:
	Books:

